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The motion of a spacecraft in the atmosphere, after reentry
through the reentry "corridor" with special emphasis on the
g-loading, is described. Descent trajectories with local
parabolic velocity at an altitude of 100 km, using the
height of perigee as the basic parameter, are calculated
for fixed and variable L/D. Descent path length, g-loading,
and altitude are plotted against time and limit values for
g-loading are given. To prevent narrowing of the reentry
corridor by reduction in g-value, control of 1lift by two

change-overs from maximum positive to maximum negative

value is recommended for path lengths of 10,000 km and by

up to four change-overs for lengths of 5000 km. $27'

The motion of a space vehicle in the atmosphere is investigated in this
paper, and an analysis is offered of the possibilities of using low 1ift to
reduce the requirements for reentry accuracy and to decrease g-loading during
reentry into the atmosphere at second cosmic (escape) velocity.

An examination is made of descent trajectories which have a local para-
bolic velocity at an altitude of yo = 100 km. The reentry angle 6 (angle be-
tween the transversal and velocity at altitude yo) is’uniquely determined by
the height of the osculating perigee h, i.e., the height of orbital perigee in

unperturbed motion and in the absence of atmospheric resistance.

#* Numbers in the margin indicate pagination in the original foreign text.
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The perigee height uniquely characterizes reentry conditions for a tra-
Jectory with a given energy. The selection of perigee height as a basic para-
meter makes it possible to relate the outside portion of the trajectory to the j
‘descent portion in the atmosphere, in the most natural manner. It is found |
convenient to compute the length of the descent portion and the time along the |
trajectory from the instant which would correspond to passage of the perigee in'
unperturbed motion.

The spread of perigee heights for which a descent with a given length
can be realized is called the '"corridor width with respect to perigee height".
The wider the reentry corridor the less accuracy is required during approach of
the space vehicle to the Earth, prior to descent.

Control of 1lift of the space vehicle permits a reduction in g-loading.

If we establish the maximum allowable g-level, then control of 1ift can be
utilized in order to provide as large a reentry corridor as possible.

Let us assume that the control of lift bears the character of a change- /2
over from the maximum possible positive value to the maximum possible negative
value, and vice versa. With this relay character of 1lift variation, the prob-
lem is then reduced to an optimum selection of the number of and instants for
change-over.

An examination is made first of a descent with fixed L/D (without change-
over). Following this, we examine descents with one, two, and more change-
overs. An analysis is given of the character of g-variation during vehicle
motion and the position of the maximum. G-load and perigee height spreads are
examined. In the calculations performed here, standard atmosphere (Bibl.l) was

approximated and used.



1. Descent with Fixed L/D

The investigation of a descent with a fixed L/D value was carried out
with the aim of revealing the spread of perigee heights for which such a de-
scent is possible, and also for the purpose of determining the g-loads prevail-
ing in this case. Here and in the following discussion we shall deal with

values of total g, determined by the formula:

n=cv AVl +

where v is the velocity modulus, u = G is the L/D ratio, Cp and C, are the
D
aerodynamic coefficients of drag and lift, c = -%?-_g%giﬁ_ Cpb is the ballistic

coefficient, g and pp are the acceleration of gravity and the air density at

the Earth's surface, S is the characteristic surface, G is the weight of the

vehicle, and 4 = is the density ratio. In our calculations, the ballistic

P
coefficient is tak;; as ¢ = 1 1/km.
Let the vehicle have an L/D of ¥. This means that the L/D can take on
any value within the range of regulation, i.e., in the range -x <u <. A /3
negative L/D is understood to be one that corresponds to a negative value of
lift.

Let h; be the height of perigee of a trajectory having a length L during
the descent with fixed positive L/D; hs is the height of perigee of a trajectory
which has the same length during a descent with fixed negative L/D. The spread
of perigee heights h; < h < hg is the reentry corridor with respect to the
height of the perigee for a given length L and a L/D of ®¥. This means that for
any height h from the reentry corridor, it is possible to select an L/D in the

range of control such that, during descent with fixed L/D, the descent tra-

jectory will have the length L. The determination performed for the reentry



corridor proceeds only from the condition of attaining the given length. If we
accept additional limitations, for example, with respect to considerations of
heating conditions or with respect to g, this may lead to a narrowing of the
corridor.

G-forces along the trajectory vary non-monotonically, forming a series of?
maximums whose magnitude and distribution depend on the magnitude of the pre-
vailing L/D and the height of the perigee. Main emphasis was placed on the
magnitude of the greatest maximum,

Figures 1 and 2 present the resulis of calculations performed to demon-
strate the possibilities of descent with fixed L/D. The abscissa gives the
perigee height; to the left of the ordinate axis we entered the distance L =
= 9R (¢ being the terminal angular distance reckoned from the perigee, and R
the Earth's radius); to the right of the ordinate axis are the magnitudes of
peak-g denoted by n. Figure 2 shows, in a rougher scale, the region of perigee
heights which corresponds to L/D values ® < 0.3.

The solid lines on the graphs represent the correlation of length to yan
perigee height for a given L/D. As can be seen from the graphs for descent
trajectories with constant 1ift/drag ratio #, there is a limit perigee height
E(n) depending upon the L/D. The trajectories which have perigee heights of
h > H(n) do not descend to the Earth's surface on the first pass. For tra-
jectories with perigee heights of h < H(n) there is a single-valued relation-
ship between perigee height and length L. As the perigee height drops, the
length decreases.

The broken lines in Figs.l and 2 represent a family of curves which show
the relationship of peak-g to perigee height for trajectories of a given length.

As can be seen from the graphs, along the curves in this family, in the region

L



of perigee heights of the order of 50 - 60 km, the g-forces show a minimum of
approximately n = 5. These minimum g-values occur at an L/D of » = 0.1 - 0.15.
In the indicated region, the first and second g-maxima are close to each other.,
For heights of h < 50 km, the first g-maximum is the greatest and the deter-
mining one; for heights of h > 60 km, the second maximum is greatest.

Figure 2 also presents a family of lines matching the g-values for a
fixed L/D. These lines consist of two segments separated by a small cross.

The first segment (thin lines) corresponds to the peak g-forces on the descend-
ing trajectories. The second segment (dot-dash lines) corresponds to g-forces
generated during passage through the atmosphere on trajectories which do not
descend to the Earth on the first pass. As can be seen from the graph, the
g-forces on the second segment are comparatively small. These g-forces can be
attained also on descending trajectories if a change-over of L/D is employed /5
in the process of descent. This will be dealt with in more detail below. We
should like to point out, as can be seen from the graph in Fig.2, that the re-
lationship of g-force at a given L/D to perigee height for x > 0.1 is close to
linear.

The peak-g is practically independent of the ballistic coefficient whose
magnitude has an effect only on the altitude of passage through maximum g. If
we assume an exponential law for the variation in density with altitude then
the shift of g-maxima with respect to altitude, for a variation in the ballistie

coefficient of Ac, can be estimated in the form

1551

Ay = Hin
y =

where H is the altitude of the homogeneous atmosphere, 1= ¢ + Ac. Thus, for

c
example, with a two-fold increase in the ballistic coefficient { q; = 2),
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assuming the altitude of the homogeneous atmosphere to be H = 8 km which corre-

sponds to a deceleration altitude of 50 - 60 km, we obtain a shift with respect
to the altitude Ay = 6 km in the region of great altitudes. The correctness of .
such a recalculation was substantiated in the performed computations. A varia-
tion in the ballistic coefficient leads to a parallel shift of the graphs with |
respect to perigee height. 1In this case, the width of the reentry corridor is
not altered.

It is clear from the graphs presented that the introduction, into this
investigation, of trajectories with large L/D values will ensure obtaining an
adequately wide reentry corridor. However, the g-values in the entire corridor
may be very large. Introducing a limitation on the magnitude of g will lead to
a sharp narrowing of the corridor.

The relationship of reentry corridor width to the allowable magnitude of g.
during descent with a fixed L/D is shown in Fig.3. The abscissa gives the iy
allowable g-value and the ordinate, the width of the reentry corridor. The
solid lines show the ratio of reentry corridor width to allowable g-value for a
given length of the descent path; the broken lines correspond to fixed L/D
values.

It can be seen from the graph how a reduction of the allowable g-value
diminishes the width of the reentry corridor. For example, if the allowable
g-value is taken as n = 40O, then for a trajectory of 1L = 5000 km, the width of
the reentry corridor will be Ah = 360 km. To achieve the indicated reentry
corridor, the vehicle must have an L/D of ¥ 2 1. If we limit the allowable g-
value to n = 10, then, for the same length, the width of the reentry corridor
will be &h = 50 km, in which case it is necessary for the vehicle to have an L/D

of ¥ 2 0.3. The graph in Fig.3 shows that a reduction in the allowable g-value
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causes a decrease in the L/D magnitude needed to achieve the corridor which

satisfies the accepted magnitude for the allowable g.

2. Descent with Change-QOver

As pointed out above, a relay system of L/D change-over was investigated
for the purpose of controlling the L/D. We reviewed descent patterns with a
varied number of L/D change-overs from maximum positive L/D to negative and
vice versa. In all of the studied patterns it was assumed that the change of
L/D occurs instantaneously; transient processes were not investigated.

Two patterns were examined with a single L/D change: one pattern with an /7
1/D change from negative to positive and one with an L/D change from positive
to negative.

In the first pattern, it was assumed that the reentry of the vehicle into
the atmosphere in the first moments is accompanied by a 1ift which is directed
downward (» =-%), so that the aerodynamic force pushes the vehicle toward the
Earth. Then, at the instant t;,, the direction of 1ift changes and the further
descent proceeds with an upward-directed 1ift (® = ). Attainment of the given
length of the descent portion is ensured by selecting the instant of change-
over t; .

In the second pattern which incorporates a single variation of L/D, it was
assumed that initial reentry into the atmosphere takes place at a positive L/D.
Then, at some instant of time the L/D instantaneously becomes negative and re-
mains negative until the descent is terminated. 1In the case of such a descent
pattern, extremely large g-forces develop after the second dip into the atmos-
phere; hence, this pattern is not rational. However, the pattern is of interest

from the point of view of determining the instant of time for change-over E&(L),
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which will yield the desired length L. As it turned out, the instant E; ap-
parently is very close to the optimum instant for the first change-over in the |
case of a pattern with more than one change-over.

The instant E; may be called the “boundary of controllability’ of a tra- ;
jectory of length L, since with no manner of L/D change-over, when t > t; (L), k
can the length L be obtained (the length is larger than the given length or thef
trajectories do not descend to the surface of the Earth on the first pass).

Let us examine a pattern with a two-time variation of the direction of /8
lift. Let the first portion of the descent from the altitude yo to the instant
of the initial change-over proceed at positive lift (x = ®). At the instant i,
the direction of 1lift reverses and a certain portion of the trajectory is then |
traversed at a negative L/D (® =-%). Then, at the instant tz the 1L/D value
again becomes positive and remains positive to the termination of the descent.

The physical sense of the investigated variation in lift during the de-
scent consists in a tendency toward reduction of the curvature of the trajectory
and a prolonging of the duration of the deceleration portion. Protracted de-
celeration in the upper layers of the atmosphere leads to a situation wherein a
considerable part of the velocity is lost in the upper layers of the atmosphere,
the variation in g with respect to time is considerably stretched out, and the
peak~-g is lowered.

A pattern with two change-overs contains the two parameters t; and tp
which are related by the condition for achieving the given length. For given
values of 1ift/drag ratio, length, and perigee height, we find a single-para-
meter family of trajectories. The magnitude of peak-g along the trajectories
of this family varies. It is necessary to find that trajectory for which the

peak-g is smallest.



Figures L and 5 for a pattern with two change-overs, show the relationship
of g-loading to time for trajectories with a length of L = 5000 km and for an |
L/D of ® = 0.5, for the case of the two perigee heights h = 4/, km and h = 54 km,
respectively. The set of trajectories has a free parameter. To represent this;
parameter, we will select the instant t; of the initial change-over.

The family of trajectories is bounded by two limit trajectories. The /9
first limit trajectory corresponds to a descent with one change-over from -#
to +*. This can be viewed as the limit case for t; = ty and the pattern with
two change-overs degenerates into a pattern with one L/D change-over. This is
represented by curve 1 in Figs.) and 5. The other limit trajectory is the tra-.
jectory with one change-over from +%* to -®. This can be considered as the limit
is the

cagse for the instant of the second change-over t; =t where t

terna ters

terminal instant of motion. In Figs.4 and 5 this boundary of the family of
trajectories is represented respectively by curves VII and VIII. The instants
of the initial change-over t; for the trajectories of this family are included
in the interval to = t; < E}.

In Figs.l4 and 5, the heavy broken line connects the maxima for g-loading
on trajectories with different values of t; . These graphs indicate that both
limit trajectories are highly unsuitable from the point of view of g-loading.

let us examine the evolution of the relationship of g-loading to time for
the case of variation of the parameter t; in the allowable region. For values
of t, close to to, an increase in t; will lead to a reduction in the maxima of
g-loading. After t; has passed through the value t,,, which corresponds to the
moment of the first g-loading maximum, still another maximum occurs close to
the first maximum (see curves II and III in Figs.4k and 5). With a further in-

crease in t;, the first isolated maximum does not change, while the magnitude
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of the second maximum is reduced. In addition, there is a simultaneous lower-
ing of all succeeding maxima. However, beginning from some instant immediatelyl
at the boundary of E&, the g-forces begin to increase sharply.

The first of the graphs presented (Fig.lL), which corresponds to the [;Q
lesser perigee height, shows that in the case of a minimization of g-loading
‘the magnitude of the first maximum is larger than all of the succeeding maxima.f
In this case, the instant t; can be selected in such a manner that the succeed-
ing maxima will be as small as possible.

The second graph (Fig.5), which corresponds to the larger perigee height,
shows that for all trajectories close to the optimum the second g-loading maxi-
mum is largest.

Let hy be the height of perigee of a trajectory with two change-overs, for
which equality is achieved between the first and one of the succeeding maxima
of g-loading. The reentry corridor can then be divided into two portions, in
which the character of g-minimization will differ.

If the perigee of the trajectory h is located in the first portion of the
reentry corridor (hy < h < hp) (see, for example, Fig.,) then, in order that
g-loading be minimal, the first change-over must occur after passage of the
first maximum, obviously, by selecting the instant for change-over from the
interval t;, < t1 < %&. The magnitude of the first maximum will be the deter-
mining one. The magnitude of the first maximum cannot be reduced by manipula-
tion of the change-over pattern.

The trajectories in Fig.5 correspond to the height of perigee from the
second portion of the reentry corridor hp < h < hg. As a result of g-minimiza-~
tion, the second maximum of g-loading is largest. By manipulating the pattern

and increasing the number of change-overs it is possible to reduce this second
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maximum. As an example of this reduction, we show a trajectory with four
change-overs in Fig.6. As initial condition for this trajectory we selected an
optimum trajectory with a height of perigee h = 54 km, obtained as a result of .
g-minimization with a pattern containing two change-overs. The g-loading on [il
this trajectory is shown in Fig.5 by curve IV. A comparison of the graphs in- -
‘dicates that an increase in the number of change-overs up to four resulted in

an essential reduction of g-loading.

In Figs.7 and 8 the altitude variation is plotted as a function of time
for the trajectories whose g-loading is represented in Figs.) and 5. It can
be seen from the graphs presented that the first three trajectories ricochet
considerably, rising to an altitude of y = 150 km or more. All the succeeding
trajectories, including trajectory IV, which represents optimum g-loading, have
the character of a creeper. The minimum altitude during the first dip increases
with the growth in t;. The first trajectory, which corresponds to the limit
trajectory I in Fig.4, dips into the atmosphere to an altitude of y = 50 km.
For the optimum trajectories, corresponding to curves IV, the altitude on the
first dip increases to 65 - 68 km.

The graphs in Figs.4 - 8 and their descriptions are presented as examples
which characterize the variation in altitude and g-loading for descent tra-
Jectories with a length of L = 5000 km for.an L/D of w = 0.5. For trajectories
which have a greater length (for example, L = 10,000 km) with perigee heights
lying in the second region of the reentry corridor, the largest maximum is not
the second but rather the last maximum, which occurs upon final penetration
into the atmosphere.

Similarly, as was done for an L/D of W = 0.5, we worked out the process

of g-minimization for other L/D values as well. At X < 0.3, the difference
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from trajectories with ¥ < 0.5 consists in the fact that, in the second region -
of the reentry corridor, the largest maximum is the last maximum, while the
second maximum can always be reduced and made lower than the first maximum by /12
proper selection of the instant for change-over.

Calculations were performed for varying values of length and L/D. A re-

sumé of the results is set forth in the Section which follows.

3. Limit Values for G-Loading

Summary graphs, characterizing the limit values of g-loading during a
descent with L/D change-over, are presented in Fig.9. The abscissa gives the
perigee height and the ordinate axis the magnitude of peak-g values. Corre-
sponding to each value of the prevailing lift-drag ratio # and length L, there
is a region in the (h,n) plane.

On each of the curves bounding a region in the(h,n) plane the upper left
angular point corresponds to a descent with fixed L/D ®. This angular point is
matched by a fully determined perigee height h; , which is the lower boundary of
the corridor with respect to the height of the perigee. At perigee heights
less than h;, it is impossible to attain the given length by any kind of change-
overs making use of the 1ift for a given L/D.

For perigee heights of h > h; there is a set of trajectories on which it
is possible to attain the necessary length and which provide opportunity for
the reduction in g-loading by means of L/D change-over.

On the right, the region is bounded by the upper boundary of the reentry
corridor hs, which corresponds approximately to altitudes of hs = 66 - 70 km,
depending on L/D and length. For larger L/D, the limit altitude hs is some- /13

what greater than for lower L/D. Trajectories which have perigee heights
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greater than those indicated cannot be projected to the surface of the Earth on
the first pass using aerodynamic forces alone.

The graph of Fig.9 contains a region of negative perigee heights. 1In
connection with this, it must be recalled that the perigee height h is a char-
acteristic of the reéntry conditions and does not define the altitude of the
closest approach to Earth during the initial entry into the dense layers of the
atmosphere. This altitude, for most of the trajectories, is not less than
50 km.

The upper boundaries of the regions in Fig.9 correspond to descent tra-
jectories with a single change-over of L/D from negative to positive. Each
point on the curve defines the peak-g on the descent trajectory, characterized
by the perigee value equal to the abscissa index for that point. There exists
a single-valued relationship between the perigee height and the instant of
change-over at which the trajectory has the given length. It is clear from the
graph that the introduction of a one-time change-over of L/D from negative to
positive leads to a notable reduction in g-loading only for perigee heights
close to hs.

The g-loading at the upper boundary of the region represents the largest
limit values of g-loading during a descent with two L/D change-overs when the
instant of the initial change-over t, - %, and the pattern with two change-
overs degenerates into a pattern with a single change-over. The points in a
region situated below its upper boundary correspond to a descent having two
change-overs with a perigee height equal to the abscissa index for that point.

The upper boundary of the region in Fig.9 depends on the length of the /1
descent path. With an increase in length of the descent path, the g-locading is

reduced and the upper boundary of the region is shifted downward. In addition,
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the angular point corresponding to a descent with a fixed L/D is displaced
along the lower left boundary of the region common to the family of regions for
one and the same prevailing L/D but for different lengths of the descent path.

Of greatest interest is the lower boundary of the region since it is there
that the lowest g-loading values occur. The lower boundary of the region can
be divided into two segments which correspond to the two portions of the re-
entry corridor. The first segment, which corresponds to the first portion of
the reentry corridor, begins at the angular point and is practically rectili-
near. In the second portion of the reentry corridor, the lower boundafy devi-
ates noticeably from a straight line.

In the first portion of the reentry corridor, the initial g~load maximum
is largest and represents the determining factor; the succeeding maxima do not '
exceed the first. For trajectories coming in the first portion, the instant of
the initial L/D change-over is found to occur after passage of the first g-
loading maximum, i.e., at positive L/D. It follows from this that the g-loading
in the first maximum, in the case under consideration, must coincide with the
g-loading in the first maximum for trajectories of a descent with a fixed L/D
equal to the value of the prevailing L/D ®. This means that the first segment
of the lower boundary in Fig.9 should coincide with the thin line in Fig.2
(i.e., the line which changes into a dot-dash line), corresponding to the same
value of #.

On the first portion of the reentry corridor, no maneuver is possible by /15
means of subsequent change-overs for reducing the magnitude of the first maxi-
mum, which is the determining one. Therefore, on this portion, from the point
of view of minimizing the peak-g, it is useless to apply a pattern with more

than two change-overs.



The lower boundary on the first portion depends only on the prevailing L/D;
On the second portion, the lower boundary may depend both on the length of the
descent path and on the pattern of change-overs. The graph in Fig.9 shows that
an increase in the length of the descent path and an increase in the number of ;
change-overs may lead to a reduction in the peak-g on the second portion. How-:
ever, there are certain limit values below which peak-g cannot be reduced.
These 1limit values correspond to g-loads at the last maximum and, numerically,
are close to the g-loads during reentry from decaying satellite orbits (Bibl.Z2),
approximately equal to n = 2 for ¥ = 0.5; n = 2.5 for ¥ = 0.3; and n = 3 for
x = 0.2,

As indicated by the graphs in Fig.9, for a prevailing L/D of #¥ = 0.2 and

n

n

0.3 the lower boundary on the second portion occupies the lower limit posi—i
tion for both the 500C-km and 10,000-km lengths of the descent path.

The entire lower boundary is common to the family of regions which depends
on the prevailing L/D. Attainment of the lower boundary is ensured by using a
pattern with two change-overs.

As follows from Fig.9, for an L/D of ¥ = 0.5 the lower boundary depends /16

on both the length of the descent path and the pattern of change-over. For a
length L = 10,000 km, as calculations have demonstrated, the lower boundary
already occupies the limit position in the case of a pattern with two change-
overs. For a length L = 5000 km, the lower boundary of the region on the second
portion, in the case of a pattern with two change-overs, is situated higher
than the limit position. An increase up to four in the number of change-overs,
as can be seen from the graph, enables the lower boundary to approach the limit

position.
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Fig.2 Length of Descent Path L and G-Loading n as a Function of
Perigee Height on a Descent with Fixed L/D (n < 0.3)
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Fig.8 Value of G-Loading n and Altitude y as a Function
of Time for Trajectories with L = 5000 km,
nw = 0.5, h = 5, km
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Fig.9 Boundary of the Region of Possible G-Loads
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